Openspeech CTC Model¶
Openspeech CTC Model¶
- 
class openspeech.models.openspeech_ctc_model.OpenspeechCTCModel(configs: omegaconf.dictconfig.DictConfig, tokenizer: openspeech.tokenizers.tokenizer.Tokenizer)[source]¶
- Base class for OpenSpeech’s encoder-only models (ctc-model). - Parameters
- configs (DictConfig) – configuration set. 
- tokenizer (Tokenizer) – tokenizer is in charge of preparing the inputs for a model. 
 
 - Inputs:
- inputs (torch.FloatTensor): A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension). input_lengths (torch.LongTensor): The length of input tensor.- (batch)
 - Returns
- Result of model predictions that contains y_hats, logits, output_lengths 
- Return type
- ouputs (dict) 
 - 
forward(inputs: torch.FloatTensor, input_lengths: torch.IntTensor) → Dict[str, torch.Tensor][source]¶
- Forward propagate a inputs and targets pair for inference. - Parameters
- inputs (torch.FloatTensor) – A input sequence passed to encoders. Typically for inputs this will be a padded FloatTensor of size - (batch, seq_length, dimension).
- input_lengths (torch.IntTensor) – The length of input tensor. - (batch)
 
- Returns
- Result of model predictions that contains y_hats, logits, output_lengths 
- Return type
- ouputs (dict) 
 
 - 
test_step(batch: tuple, batch_idx: int) → collections.OrderedDict[source]¶
- Forward propagate a inputs and targets pair for test. - Inputs:
- train_batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 - 
training_step(batch: tuple, batch_idx: int) → collections.OrderedDict[source]¶
- Forward propagate a inputs and targets pair for training. - Inputs:
- train_batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor) 
 
 - 
validation_step(batch: tuple, batch_idx: int) → collections.OrderedDict[source]¶
- Forward propagate a inputs and targets pair for validation. - Inputs:
- train_batch (tuple): A train batch contains inputs, targets, input_lengths, target_lengths batch_idx (int): The index of batch 
 - Returns
- loss for training 
- Return type
- loss (torch.Tensor)